Video Deflection Technology promises to be the future of many studies in Vibration Analysis. As the electronics evolve, new technologies in predictive maintenance raise as well, and so is the case of non invasive vibration Analysis. We never imagined we could measure vibration with a camera and even better, with our own pocket cellphone. So is the case of Video Deflection, Stay with me to learn a little bit more about this amazing technology.
Video Deflection Technology is a method of vibration analysis that utilizes modern slow speed camera technology found in everything from consumer grade cellular phones to expensive professional grade cameras combined with analytic software to identify micro-movements and amplify motion within a video that are not recognizable by the human eye.
Utilizing a combination of algorithms, Video Deflection Technology software locates target areas of interest. Based upon identified angularity and color differentiation within a target video frame, this technology compares the movement of those targets from frame to frame. In fact, this method can create thousands of vibration analysis measurement points without ever having to use a traditional accelerometer.
Step 1: Identify the Targets
Once target locations of measurement are identified static zones need to be identified in order to compare the movement of targets to the movement of identified static areas.
Step 2: Compare Targets to Static Points
Repeatable, Reliable, and NIST Traceable Calibration Video Deflection Technology offers 3 different calibration methods to enable the user to establish a reliable deflection model and extremely accurate point based vibration analysis data.
Step 3: Choose the Best Calibration Method Available
The Looking Glass Technique identifies the dominant forcing frequency thus enabling the completion of a phase simulation of the applicable targets.
Step 4: Identify Dominant Forcing Frequencies
Step 5: Check Phase if Appropriate
Identifying the areas of the most interest can be difficult if done using the phase simulation method. Therefore, motion detection feature identifies and colorizes the areas of the most displacement found within the post processed video.
Step 6: Motion Detection Tool
Creating a Video Deflection Model that Amplifies Motion of the applicable targets with a video is a highly sought-after result within the motion magnification field. To do so one can amplify the motion of the entire range of targets, focus on a specific range of targets based on filters or any number of independent ranges using filters.
Step 7: Add Filters
Step 7: Zoom To Areas of Interest or Create Video Deflection Model
< Vibration Monitoring Systems | Choosing the best Vibration Analyzer > |
---|
ABOUT THE AUTHOR
Michael Howard, American entrepreneur is a veteran of the United States Air Force and the predictive maintenance industry. Michael is an avid CrossFit® athlete, CrossFit® CF-L1 Trainer and passionate advocate of revolutionary concepts in the wireless instrumentation and the IIoT communities for the maintenance & reliability industries.
Michael is a native of South Glens Falls, New York and a graduate of Excelsior College and Capella University with degrees in Electro-Mechanical Engineering, Leadership, & Organizational Management. Mike is the CEO of Erbessd Instruments and is responsible for Distribution, Sales, Marketing and Operations throughout the English speaking markets.
ERBESSD INSTRUMENTS is a leading manufacturer of Vibration Analysis Equipment and Dynamic Balancing Machines with facilities in Mexico and the United States and representatives around the world. ERBESSD INSTRUMENTS – MASTERS OF MACHINE HEALTH
Check Out our Vibration Analyzers: